Use the distributive property to write an equivalent expression:

1.
$$2x(3x^2 - 14x) =$$

2.
$$-5n^2(2n^3-6n)=$$

3.
$$4y^2(9y^3 + 8y^2 - 11) =$$

4.
$$-3g^7(g^4-6g^2+5)=$$

Write an equivalent expression by factoring the G.C.F.:

5.
$$6x - 4 =$$

6.
$$v^2 + 4v =$$

7.
$$10x^3 - 25x^2 + 20 =$$

8.
$$2t^2 - 10t^4 =$$

9.
$$15n^3 - 3n^2 + 12n =$$

10.
$$6p^6 + 24p^5 + 18p^3 =$$

11. The length of a rectangle is represented by 3x, the width is represented by $6x^2 + 4x$, what is the area of the rectangle? What is the perimeter?

12. The length of a rectangle is sixteen more than four times the width. What is the area of the rectangle written as a polynomial? What are the dimensions of a different rectangle with an equivalent area?

Spiral:

13. Solve for x in the following equation. Show your work.

$$T = (y + xw)(1+d)$$

Name: _____

Class:

AU7: Notes# 3 – Multiplying a Polynomial by a Polynomial

Date: _____

Warm-Up:

Use the distributive property to write an equivalent expression:

1.
$$2x(x^2+2x-7)=$$

Multiply without a calculator:

2.
$$(27)(23) =$$

Example 1: Multiplying a Binomial and a Binomial (3 Ways to Look at it)

$$(x+3)(x+2) =$$

Try-It! - Write an equivalent expression by multiplying:

a.
$$(x+3)(x-2) =$$

b.
$$(2x+1)(x+2) =$$

Practice: Write an equivalent expression by the multiplying

3.
$$(3x-1)(2x+1) =$$

4.
$$(-2x-3)(x-2) =$$

5.
$$(x+1)(2x+5) =$$

6.
$$(3x-5)(4x+2)=$$

7.
$$(x+4)(x-4) =$$

8.
$$(3x-5)(3x+5) =$$

9.
$$(x+3)(x^2+x+2)=$$

10.
$$(3x^2 - 4x - 5)(3x + 5) =$$

11.
$$(2x^2 + 3x - 5)(x^2 + x + 2) =$$

Example 2: Applications

The length of a rectangle is represented by (x+5), the width is represented by $6x^2 - 4x - 2$, what is the area of the rectangle?

Try-It

A rectangular prism has a length of (x+5), a width of (2x+3) and a height of (x+2), what is the volume?

Name:

Class:

AU7: HW# 3 – Multiplying a Polynomial by a Polynomial

Date: _____

Directions: Simplify the following expressions.

1.
$$6k(4k+k^2)+9k(2k-6k^2)=$$

2.
$$3w(12w-1)-8w(12w-1)=$$

3.
$$(5a+2)(6a-1)=$$

4.
$$(2x+9)(x+2)=$$

5.
$$(-2x-1)(x+2) =$$

6.
$$(2y+5)(y-3)=$$

7.
$$(2x+4)(2x-4)=$$

8.
$$(3x-5y)(3x+5y) =$$

9.
$$(x+9)(x^2-4x+1)=$$

10.
$$(4x^2 + x + 3)(6x - 1) =$$

11.
$$(6y^2 + 3y + 1)(y^2 + y + 2) =$$

12. Find the area of the shaded region.

13. Find the volume of the box.

Reteaching 9-3

Multiplying Binomials

OBJECTIVE: Multiplying binomials

MATERIALS: None

To multiply two binomials, follow these steps:

- Multiply each term in one binomial by each term of the other binomial.
 Drawing arrows as a visual reminder of what to do is a helpful technique.
- · Circle like terms and combine.

Example

Find the product (x + 7)(x + 2).

$$(x+7)(x+2)$$

Draw arrows from the first term in the first binomial to both terms in the second binomial.

$$x^2 + 2x$$

Multiply each term of the second binomial by x.

$$(x+7)(x+2)$$

Draw arrows from the second term in the first binomial to both terms in the second binomial.

$$7x + 14$$

 \leftarrow Multiply each term of the second binomial by 7.

$$x^2 + 2x + 7x + 14$$

Add the two expressions.

$$x^2 + (2x) + (7x) + 14$$

Circle like terms and combine.

$$x^2 + 9x + 14$$

→ Solution

Exercises

Use arrows as shown above to simplify each product.

1.
$$(x + 6)(x - 2)$$

2.
$$(x - 8)(x - 4)$$

3.
$$(x-3)(x+9)$$

4.
$$(x + 2)(x - 7)$$

5.
$$(2x + 3)(x + 4)$$

6.
$$(x + 4)(2x + 5)$$

Simplify each product.

7.
$$(7x + 4)(2x - 4)$$

8.
$$(3x + 2)(3x + 2)$$

9.
$$(5x + 1)(x + 1)$$

10.
$$(2x + 1)(x + 1)$$

11.
$$(4x + 1)(2x - 1)$$

12.
$$(3x - 1)(x + 2)$$

Practice 9-3

Multiplying Binomials

Find each product. Write in standard form.

1.
$$(x + 3)(2x - 5)$$

4. (x + 5)(x + 4)

5) **2.**
$$(x^2 + x - 1)(x + 1)$$

5.
$$(2b-1)(b^2-3b+4)$$

7.
$$(2g-3)(2g^2+g-4)$$
 8. $(3s-4)(s-5)$

10.
$$(x+6)(x^2-4x+3)$$
 11. $(5x-3)(4x+2)$

13.
$$(3x + 7)(x + 5)$$
 14. $(5x - 2)(x + 3)$

$$(3x + 7)(x + 3)$$

16.
$$(a-6)(a+8)$$
 17. $(x+2)(2x^2-3x+2)$

19.
$$(x-2)(x^2+4x+4)$$
 20. $(2r+1)(3r-1)$

22.
$$(2n-3)(n^2-2n+5)$$
 23. $(p-4)(2p+3)$

25.
$$(2x^2 - 5x + 2)(4x - 3)$$
 26. $(x + 7)(x + 5)$

28.
$$(2x + 1)(4x + 3)$$
 29. $(3x + 4)(3x - 4)$

31.
$$(n-7)(n+4)$$
 32. $(3x-1)(2x+1)$

34.
$$(2x^2 + 5x - 3)(2x + 1)$$
 35. $(b + 8)(2b - 5)$

37.
$$(3x + 5)(5x - 7)$$
 38. $(x - 5)(2x^2 - 7x - 2)$

40.
$$(2x^2 + 5x - 4)(2x + 7)$$
 41. $(x^2 + 6x + 11)(3x + 5)$

40.
$$(2x + 5x - 4)(2x + 7)$$
 41. $(x^2 + 6x + 11)(3x +$

43.
$$(4x - 7)(2x - 5)$$
 44. $(x - 9)(3x + 5)$

3.
$$(3w + 4)(2w' - 1)$$

6.
$$(a - 11)(a + 5)$$

9.
$$(4x + 3)(x - 7)$$

12.
$$(3y + 7)(4y + 5)$$

15.
$$(3m^2 - 7m + 8)(m - 2)$$

18.
$$(a^2 + a + 1)(a - 1)$$

21.
$$(k + 4)(3k - 4)$$

24.
$$(3x + 1)(4x^2 - 2x + 1)$$

27.
$$(6x - 11)(x + 2)$$

30.
$$(6x - 5)(3x + 1)$$

33.
$$(d + 9)(d - 11)$$

36.
$$(2x - 5)(x + 4)$$

39.
$$(2x^2 - 9x + 11)(2x + 1)$$

42.
$$(5x + 7)(7x + 3)$$

45.
$$(2x-1)(x^2-7x+1)$$

- **46.** The width of a rectangular painting is 3 in. more than twice the height. A frame that is 2.5 in. wide goes around the painting.
 - **a.** Write an expression for the combined area of the painting and frame.
 - **b.** Use the expression to find the combined area when the height of the painting is 12 in.
 - **c.** Use the expression to find the combined area when the height of the painting is 15 in.
- **47.** The Robertsons put a rectangular pool with a stone walkway around it in their backyard. The total length of the pool and walkway is 3 times the total width. The walkway is 2 ft wide all around.
 - a. Write an expression for the area of the pool.
 - b. Find the area of the pool when the total width is 10 ft.
 - c. Find the area of the pool when the total width is 9 ft.
- **48.** The Cutting Edge frame shop makes a mat by cutting out the inside of a rectangular board. Use the diagram to find the length and width of the original board if the area of the mat is 184 in².

