## Reteaching 8-2

**Scientific Notation** 

**OBJECTIVE:** Writing numbers in scientific

MATERIALS: None

notation

To write a number in scientific notation, follow these steps:

- · Move the decimal to the right of the first integer.
- If the original number is greater than 1, multiply by  $10^n$ , where n represents the number of places the decimal was moved to the left.
- If the original number is less than 1, multiply by  $10^{-n}$ , where n represents the number of places the decimal was moved to the right.

## Examples

Write each number in scientific notation.

- **a.** 9,040,000,000
- standard form
- 9.040 000 000.
- Move the decimal to the left nine places.
- $9.04 \times 10^{9}$
- Drop all insignificant 0's. Multiply by the appropriate power of 10.
- **b.** 0.000 000 8
- standard form
- 0.000 000 8.
- Move the decimal to the right seven places.
- $8.0 \times 10^{-7}$
- Multiply by the appropriate power of 10.

## Exercises

Write each number in scientific notation.

1. 420,000

2. 5,100,000,000

3. 260 billion

4. 830 million

**5.** 0.00075

**6.** 0.004005

Write each number in standard notation.

7.  $6.345 \times 10^8$ 

8.  $3.2 \times 10^{-5}$ 

**9.**  $4.081 \times 10^6$ 

- **10.**  $2.581 \times 10^{-3}$
- 11.  $3.07 \times 10^{-2}$

**12.**  $1.526 \times 10^6$ 

13.  $8.04 \times 10^{-4}$ 

14.  $7.625 \times 10^5$ 

**15.**  $6.825 \times 10^4$ 

- **16.**  $3.081 \times 10^{-5}$
- 17.  $8.3847 \times 10^2$

**18.**  $3.6245 \times 10^{-2}$ 

All rights reserved.

## Practice 8-2

Scientific Notation

Write each number in standard notation.

1. 
$$7 \times 10^4$$

2. 
$$3 \times 10^{-2}$$

3. 
$$2.6 \times 10^5$$

4. 
$$7.1 \times 10^{-4}$$

5. 
$$5.71 \times 10^{-5}$$

**6.** 
$$4.155 \times 10^7$$

7. 
$$3.0107 \times 10^2$$

8. 
$$9.407 \times 10^{-5}$$

**9.** 
$$31.3 \times 10^6$$

**10.** 
$$83.7 \times 10^{-4}$$

**11.** 
$$0.018 \times 10^{-1}$$

**12.** 
$$0.016 \times 10^5$$

**13.** 
$$8.0023 \times 10^{-3}$$

**14.** 
$$6.902 \times 10^8$$

**15.** 
$$1005 \times 10^2$$

**16.** 
$$0.095 \times 10^{-1}$$

Write each number in scientific notation.

**25.** 
$$194 \times 10^3$$

**26.** 
$$154 \times 10^{-3}$$

**27.** 
$$0.05 \times 10^6$$

**28.** 
$$0.031 \times 10^{-4}$$

Order the numbers in each list from least to greatest.

**33.** 
$$7 \times 10^{-7}$$
,  $6 \times 10^{-8}$ ,  $5 \times 10^{-6}$ ,  $4 \times 10^{-10}$ 

**34.** 
$$5.01 \times 10^{-4}, 4.8 \times 10^{-3}, 5.2 \times 10^{-2}, 5.6 \times 10^{-2}$$

**35.** 
$$62,040, 6.2 \times 10^2, 6.207 \times 10^3, 6.34 \times 10^{-1}$$

**36.** 
$$10^{-3}$$
,  $5 \times 10^{-3}$ ,  $8 \times 10^{-2}$ ,  $4 \times 10^{-1}$ 

Simplify. Write each answer using scientific notation.

**37.** 
$$4(3 \times 10^5)$$

**38.** 
$$5(7 \times 10^{-2})$$

**39.** 
$$8(9 \times 10^9)$$

**40.** 
$$7(9 \times 10^6)$$

**41.** 
$$3(1.2 \times 10^{-4})$$

**42.** 
$$2(6.1 \times 10^{-8})$$

**43.** 
$$3(1.2 \times 10^{-4})$$

**44.** 
$$3(4.3 \times 10^{-4})$$

**45.** 
$$3(3.2 \times 10^{-2})$$

## Complete the table.

|     | Units of Area in Square Feet |               |                         |  |
|-----|------------------------------|---------------|-------------------------|--|
|     | Unit                         | Standard Form | Scientific Notation     |  |
| 46. | 1 in. <sup>2</sup>           |               | $6.9444 \times 10^{-3}$ |  |
| 47. | 1 link <sup>2</sup>          | 0.4356        |                         |  |
| 48. | 1 rod <sup>2</sup>           | 272.25        |                         |  |
| 49. | 1 mi <sup>2</sup>            |               | $2.78 \times 10^{7}$    |  |
| 50. | 1 cm <sup>2</sup>            | 0.001076      |                         |  |
| 51. | 1 hectare                    |               | $1.08 \times 10^{7}$    |  |

## **Practice**

For use with pages 204-209

Write the number in scientific notation.

**1.** 1250

2. 205,000

**3.** 0.0035

4. 0.00058

**5.** 5,220,000

**6.** 0.000064

Write the number in standard form.

7. 
$$5.3 \times 10^2$$

8. 
$$7.2 \times 10^{-2}$$

**9.** 
$$4.3 \times 10^{-3}$$

**10.** 
$$1.2 \times 10^5$$

**11.** 
$$9.45 \times 10^{-5}$$

**12.** 
$$6.32 \times 10^6$$

Complete the statement using <, >, or =.

**13.** 
$$1.8 \times 10^2$$
 \_\_\_\_ 1800

**14.** 
$$43,000 _{---} 4.3 \times 10^3$$

**15.** 
$$6.9 \times 10^{-3}$$
 \_\_\_\_\_ 0.0068

**16.** 
$$1.8 \times 10^{-4}$$
 \_\_\_\_\_ 0.0018

order the numbers from least to greatest.

17. 1. 2×102, 1.19×103, 1.12×103 18. 4.8×10-3, 4.8×10-3, 4.8×10-4

# LESSON

## **Practice**

For use with pages 204-209

**21.** The sun has a diameter of  $1.39 \times 10^6$  kilometers. The diameter of Earth is  $1.28 \times 10^4$  kilometers. How many times larger is the sun's diameter than the Earth's diameter? Give your answer in scientific notation.

Order the numbers from least to greatest.

**22.** 2400; 
$$2.5 \times 10^2$$
;  $2.3 \times 10^3$ 

**23.** 
$$4.8 \times 10^5$$
;  $481,000$ ;  $4.7 \times 10^5$ 

**24.** 
$$0.036$$
;  $3.5 \times 10^{-2}$ ;  $3.7 \times 10^{-2}$ 

**25.** 
$$8.3 \times 10^{-4}$$
;  $0.0084$ ;  $8.2 \times 10^{-4}$ 

Write the number in scientific notation.

26. Volume (in cubic kilometers) of water in Lake Michigan: 4920

**27.** Approximate density (in grams per milliliter) of one helium atom: 0.0001787

Write the number in standard form.

**28.** Floor area (in square meters) of the Sears Tower in Chicago:  $4.16 \times 10^5$ 

**29.** Approximate width (in meters) of a United States dollar bill:  $6.6294 \times 10^{-2}$ 

**30.** Volume (in cubic meters) of a mole of helium atoms:  $2.1 \times 10^{-5}$ 

## ०६ इप्रभव्यविक





## Vocabulary and Concept Check

- 1. REASONING How do you know whether a number written in standard form will have a positive or a negative exponent when written in scientific notation?
- 2. WRITING When is it appropriate to use scientific notation instead of standard form?



## Practice and Problem Solving

Write the number in scientific notation.



**1 2 3.** 0.0021

4. 5,430,000

**5.** 321,000,000

**6.** 0.00000625

7. 0.00004

8. 10,700,000

- **9.** 45,600,000,000
- **10.** 0.000000000009256
- 11. 840,000

ERROR ANALYSIS Describe and correct the error in writing the number in scientific notation.

12.



 $3.6 \times 10^{5}$ 

 $72.5 \times 10^{6}$ 

Order the numbers from least to greatest.

- **4.**  $1.2 \times 10^8$ ,  $1.19 \times 10^8$ ,  $1.12 \times 10^8$ 
  - **16.**  $5.76 \times 10^{12}$ ,  $9.66 \times 10^{11}$ ,  $5.7 \times 10^{10}$
  - **18.**  $9.9 \times 10^{-15}$ ,  $1.01 \times 10^{-14}$ ,  $7.6 \times 10^{-15}$
- **15.**  $6.8 \times 10^{-5}$ ,  $6.09 \times 10^{-5}$ ,  $6.78 \times 10^{-5}$
- 17.  $4.8 \times 10^{-6}$ ,  $4.8 \times 10^{-5}$ ,  $4.8 \times 10^{-8}$
- **19.**  $5.78 \times 10^{23}$ ,  $6.88 \times 10^{-23}$ ,  $5.82 \times 10^{23}$
- 20. HAIR What is the diameter of a human hair written in scientific notation?



Diameter: 0.000099 meter

21. EARTH What is the circumference of Earth written in scientific notation?



Circumference at the equator: about 40,100,000 meters

22. CHOOSING UNITS In Exercise 21, name a unit of measurement that would be more appropriate for the circumference. Explain.

10.6

# Practice For use after Lesson 10.6

Write the number in scientific notation.

- **1.** 4,200,000
- **2.** 0.038

**3.** 600,000

- **4.** 0.0000808
- **5.** 0.0007

**6.** 29,010,000,000

Order the numbers from least to greatest.

7. 
$$6.4 \times 10^8$$
,  $5.3 \times 10^9$ ,  $2.3 \times 10^8$ 

8. 
$$9.1 \times 10^{-3}$$
,  $9.6 \times 10^{-3}$ ,  $9.02 \times 10^{-3}$ 

9. 
$$7.3 \times 10^7$$
,  $5.6 \times 10^{10}$ ,  $3.7 \times 10^9$ 

**10.** 
$$1.4 \times 10^{-5}$$
,  $2.01 \times 10^{-15}$ ,  $6.3 \times 10^{-2}$ 

11. A patient has 0.0000075 gram of iron in 1 liter of blood. The normal level is between  $6 \times 10^{-7}$  gram and  $1.6 \times 10^{-5}$  gram. Is the patient's iron level normal? Write the patient's amount of iron in scientific notation.

## Reteaching 8-3

## **Multiplication Properties of Exponents**

**OBJECTIVE:** Multiplying powers with the same base

MATERIALS: None

- A power is an expression in the form  $a^n$ .
- To multiply powers with the same base, add the exponents  $a^m \cdot a^n = a^{m+n}$

## **Example**

Simplify  $4^6 \cdot 4^3$ .

$$4^6 \cdot 4^3$$
=  $4^{6+3}$ 

Rewrite as one base with the exponents added.

$$= 4^9$$

Add the exponents.

So 
$$4^6 \cdot 4^3 = 4^9$$
.

## Exercises

Complete each equation.

1. 
$$8^2 \cdot 8^3 = 8^{11}$$

**2.** 
$$2^5 \cdot 2^6 = 2^9$$

3. 
$$a^{12} \cdot a^{12} = a^{15}$$

**4.** 
$$x^{6} \cdot x^{5} = x^{6}$$

$$b^{-4} \cdot b^3 = b^3$$

**6.** 
$$6^4 \cdot 6^6 = 6^2$$

7. 
$$3^4 \cdot 3^8 = 3^8$$

**8.** 
$$c^{E^*} \cdot c^{-7} = c^{11}$$

**9.** 
$$10^{-6} \cdot 10^{-3} = 10^{8}$$

Simplify each expression.

**10.** 
$$3x^2 \cdot 4x \cdot 2x^3$$

**11.** 
$$m^2 \cdot 3m^4 \cdot 6a \cdot a^{-3}$$

**12.** 
$$p^3q^{-1} \cdot p^2q^{-8}$$

**13.** 
$$5x^2 \cdot 3x \cdot 8x^4$$

**14.** 
$$x^2 \cdot y^5 \cdot 8x^5 \cdot y^{-2}$$

**15.** 
$$7y^2 \cdot 3x^2 \cdot 9$$

**16.** 
$$2y^2 \cdot 3y^2 \cdot 4y^5$$

17. 
$$x^4 \cdot x^{-5} \cdot x^4$$

**18.** 
$$x^{12} \cdot x^{-8} \cdot y^{-2} \cdot y^3$$

**19.** 
$$6a^2 \cdot b \cdot 2a^{-1}$$

**20.** 
$$r^6 \cdot s^{-3} \cdot r^{-2} \cdot s$$

**21.** 
$$3p^{-2} \cdot q^3 \cdot p^3 \cdot q^{-2}$$

All rights reserved.

## Practice 8-3

### **Multiplication Properties of Exponents**

Simplify each expression.

1. 
$$(3d^{-4})(5d^8)$$

4. 
$$a^3 \cdot a$$

7. 
$$p^7 \cdot q^5 \cdot p^6$$

10. 
$$\frac{1}{b^{-7} \cdot b^5}$$

**13.** 
$$(8d^4)(4d^7)$$

**16.** 
$$r^7 \cdot s^4 \cdot s \cdot r^3$$

19. 
$$2^8 \cdot 2^{-9} \cdot 2^3$$

**22.** 
$$m^{12} \cdot m^{-14}$$

**25.** 
$$5^{-7} \cdot 5^9$$

**28.** 
$$f^5 \cdot f^2 \cdot f^0$$

2. 
$$(-8m^4)(4m^8)$$

5. 
$$3^8 \cdot 3^5$$

8. 
$$(-1.5a^5b^2)(6a)$$

**11.** 
$$p^5 \cdot q^2 \cdot p^4$$

14. 
$$x^{-9} \cdot x^3 \cdot x^2$$

**17.** 
$$b^7 \cdot b^{13}$$

**20.** 
$$(6r^4s^3)(9rs^2)$$

**23.** 
$$s^7 \cdot t^4 \cdot t^8$$

**26.** 
$$\frac{1}{h^7 \cdot h^3}$$

**29.** 
$$r^6 \cdot r^{-13}$$

3. 
$$n^{-6} \cdot n^{-9}$$

**6.** 
$$(3p^{-15})(6p^{11})$$

**9.** 
$$(-2d^3e^3)(6d^4e^6)$$

**12.** 
$$\frac{1}{n^7 \cdot n^{-5}}$$

**15.** 
$$2^3 \cdot 2^2$$

**18.** 
$$(7p^4)(5p^9)$$

**21.** 
$$4^3 \cdot 4^2$$

**24.** 
$$(-3xy^6)(3.2x^5y)$$

**27.** 
$$\frac{1}{t^{-5} \cdot t^{-3}}$$

**30.** 
$$5^{-6} \cdot 5^4$$

Simplify each expression. Write each answer in scientific notation.

**31.** 
$$(7 \times 10^7)(5 \times 10^{-5})$$

**34.** 
$$(4 \times 10^9)(4.1 \times 10^8)$$

**37.** 
$$(6 \times 10^{-6})(5.2 \times 10^{4})$$

**40.** 
$$(2.1 \times 10^{-4})(4 \times 10^{-7})$$

**43.** 
$$(4 \times 10^9)(11 \times 10^3)$$

**46.** 
$$(6 \times 10^{-8})(12 \times 10^{-7})$$

**32.** 
$$(3 \times 10^8)(3 \times 10^4)$$

**35.** 
$$(7.2 \times 10^{-7})(2 \times 10^{-5})$$

**38.** 
$$(4 \times 10^6)(9 \times 10^8)$$

**41.** 
$$(1.6 \times 10^5)(3 \times 10^{11})$$

**44.** 
$$(5 \times 10^{13})(9 \times 10^{-9})$$

**47** 
$$(6 \times 10^{15})(3.2 \times 10^{2})$$

**44.** 
$$(5 \times 10^{13})(9 \times 10^{-9})$$

**47.** 
$$(6 \times 10^{15})(3.2 \times 10^2)$$

**33.** 
$$(9.5 \times 10^{-4})(2 \times 10^{-5})$$

**36.** 
$$(5 \times 10^7)(4 \times 10^3)$$

**39.** 
$$(6.1 \times 10^9)(8 \times 10^{14})$$

**42.** 
$$(9 \times 10^{12})(0.3 \times 10^{-18})$$

**45.** 
$$(7 \times 10^6)(4 \times 10^9)$$

**48.** 
$$(5 \times 10^8)(2.6 \times 10^{-16})$$

**50.** Light travels approximately  $5.87 \times 10^{12}$  mi in one year. This distance is called a light-year. Suppose a star is  $2 \times 10^4$  light-years away. How many miles away is that star?

**51.** The weight of 1 m<sup>3</sup> of air is approximately  $1.3 \times 10^3$  g. Suppose that the volume of air inside of a building is  $3 \times 10^6$  m<sup>3</sup>. How much does the air inside the building weigh?

**52.** Light travels  $1.18 \times 10^{10}$  in. in 1 second. How far will light travel in 1 nanosecond or  $1 \times 10^{-9}$  s?

All rights reserved.

## Multiplying Monomials with the Same Base

To multiply monomials that have the same base, add their exponents. For example,  $(2^3)(2^2) = 2^{3+2} = 2^5$ , because  $(2^3)(2^2) =$  $(2 \cdot 2 \cdot 2)(2 \cdot 2) = 2^5$ . Therefore,  $(a^6)(a^3) = a^{6+3} = a^9$ .

When the monomials have coefficients other than 1, multiply the coefficients first.

#### **EXAMPLE 1**

Simplify: 
$$s \cdot s$$
  
 $s^1 \cdot s^1 = s^{1+1}$   
 $= s^2$ 

#### **EXAMPLE 2**

Simplify:  $(3m^4)(3m^3)$ 

 $(3m^4)(3m^3) = (3 \cdot 3)m^{4+3}$ 

#### **EXAMPLE 3**

Simplify: 
$$(d^3ef)(de^4)$$
  
 $(d^3ef)(de^4) = (d^{3+1})(e^{1+4})(f^1)$   
 $= d^4e^5f$ 

#### PRACTICE

Cim-lif.

| Simplify.                                             | Ь                       | С                      | · d                            |
|-------------------------------------------------------|-------------------------|------------------------|--------------------------------|
| 1. $(a^3)(a^5) =$                                     | $(b^3)(b^4) =$          | $(c^6)(c^6) =$         | $(d^3)(d^7) =$                 |
| $2. \ 5^2 \cdot (5^3 \cdot 5^1) =$                    | $(a^3b)(ab^2) =$        | $(m^5n)(m^2n) =$       | $(x^6y)(xy^3) =$               |
| <b>3.</b> (abc)(a) =                                  | $(xyz)(x^2) =$          | $(rst)(s^2) =$         | $(def)(e^5) =$                 |
| 4. $(a^3xy)(ay^2) =$                                  | $(a^4bc)(ab^2) =$       | $2(4^3 \cdot 4^2) =$   | $(b^3df^3)(b^5d) =$            |
| 5. $(7m^2n^2)(m^6n^2) =$                              | $(6a^5b^6)(3ab) =$      | $(8b^3cd)(2b) =$       | $(5x^2y^3)(5x^2y^3) =$         |
| <b>6.</b> (9 <i>ay</i> )( <sup>-</sup> 8 <i>y</i> ) = | $(^-6ab^2)(^-9bc) =$    | $(2xy^3)(6x^4) =$      | $2mr(^-6mr^6) =$               |
| 7. $(4z^5)(12yz) =$                                   | $3^2 (4^1 \cdot 4^2) =$ | $(^{-}16z^{3})(9yz) =$ | $(^{-}15r^{6})(^{-}5r^{3}s) =$ |
| $8. \ (15x^3y^2)(2axy) =$                             | $(-10bc^3d)(-5bcd) =$   | $(6x^3y)(^-6axy) =$    | $(8c^2d)(6abd^2) =$            |

## **Powers of Powers**

When a base with an exponent is raised to another exponent, such as  $(2^2)^3$ , simplify by multiplying the two exponents. You can check the multiplication by showing the factors and adding the exponents.

Remember to multiply the exponents of *all* the factors in each expression, including coefficients. If no exponent is used, the exponent 1 is understood.

#### **EXAMPLE 1**

### Simplify: (2<sup>2</sup>)<sup>3</sup>

$$(2^2)^3 = 2^{2 \cdot 3} = 2^6 = 64$$

Check:

$$(2^{2})^{3} = (2^{2} \cdot 2^{2} \cdot 2^{2})$$
$$= 2^{2+2+2} = 2^{6} = 64$$

#### **EXAMPLE 2**

### Simplify: $(3x^3)^3$

$$(3x^3)^3 = (3^{1\cdot 3})(x^{3\cdot 3})$$
  
=  $3^3x^9 = 27x^9$ 

#### Check:

Ь

$$(3x^3)^3 = (3 \cdot 3 \cdot 3)(x^3 \cdot x^3 \cdot x^3)$$
$$= 27x^{3+3+3} = 27x^9$$

#### **EXAMPLE 3**

## Simplify: $(2ab^2)^2(a^2)^3$

$$(2ab^{2})^{2}(a^{2})^{3} = (2^{2}a^{2}b^{4})(a^{6})$$
$$= 2^{2}a^{2+6}b^{4}$$
$$= 4a^{8}b^{4}$$

#### PRACTICE

## Simplify.

| $(3^2)^3 =$ | $(4^2)^2 =$ |
|-------------|-------------|
| 101 -       | 1 (1)       |

1. 
$$(3^2)^3 =$$

$$(4^2)^2 =$$

$$(5^2)^3 =$$

$$(6^3)^2 =$$

**2.** 
$$(2a^4)^2 =$$

$$(3h^3)^4 =$$

$$(2n^5)^4 =$$

$$(5k^7)^3 =$$

3. 
$$(a^4b)^4 =$$

$$(st)^6 =$$

$$(xy^3z)^5 =$$

$$(m^2np)^8 =$$

**4.** 
$$(a^4b)^2 =$$

$$(y^2z)^2 =$$

$$(mn^4)^3 =$$

$$(p^6q)^3 =$$

5. 
$$(m^2n^4)^2 =$$

$$(p^5q^2)^2 =$$

$$(r^2s^4)^3 =$$

$$(x^4y^2)^4 =$$

**6.** 
$$(2c^2de^3)^2 =$$

$$(4x^3y^2z)^2 =$$

$$(2mn^5p^3)^4 =$$

$$(5r^4s^2t^3)^3 =$$

## Simplify.

7. 
$$(ab^4)(a^2b)^2 =$$

$$(m^2n)(m^6n)^2 =$$

$$(j^2k^3)(j^2k^2)^3 =$$

$$8. (xy)^2(x^3y^2)^3 =$$

$$(mn^2)^3(m^2n^3)^4 =$$

$$(g^4h)^3(g^4h^2)^3 =$$

9. 
$$(-3y^2)^2(x^2y^2)^3 =$$

$$(7pq^3)^2(p^4q^6)^3 =$$

$$(3x)^3(xy^4)^2 =$$

## Practice 8-4

#### More Multiplication Properties of Exponents

Simplify each expression.

1. 
$$(4a^5)^3$$

**4.** 
$$(x^5)^2$$

7. 
$$x^4 \cdot (x^4)^3$$

**10.** 
$$(a^4)^{-5} \cdot a^{13}$$

13. 
$$(d^2)^{-4}$$

**16.** 
$$(12b^{-2})^2$$

**19.** 
$$(y^6)^{-3} \cdot y^{21}$$

**22.** 
$$(a^3)^6$$

**25.** 
$$(5a^3b^5)^4$$

**28.** 
$$a^{-4} \cdot (a^4b^3)^2$$

**34.**  $(9 \times 10^7)^2$ 

**37.**  $(5 \times 10^5)^4$ 

**40.**  $(3 \times 10^5)^4$ 

**43.**  $10^5 \cdot (8 \times 10^7)^3$ 

2. 
$$(2^{-3})^4$$

5. 
$$2^5 \cdot (2^4)^2$$

8. 
$$(x^5y^3)^3(xy^5)^2$$

**11.** 
$$(3f^4g^{-3})^3(f^2g^{-2})^{-1}$$

**14.** 
$$(a^3b^4)^{-2}(a^{-3}b^{-5})^{-4}$$

**17.** 
$$(m^{-5})^{-3}$$

**20.** 
$$n^6 \cdot (n^{-2})^5$$

**23.** 
$$b^{-9} \cdot (b^2)^4$$

**26.** 
$$(b^{-3})^6$$

**29.** 
$$(x^4y)^3$$

3. 
$$(m^{-3}n^4)^{-4}$$

**6.** 
$$(4x^4)^3(2xy^3)^2$$

9. 
$$(5^2)^2$$

**12.** 
$$x^3 \cdot (x^3)^5$$

**15.** 
$$(x^2y)^4$$

**18.** 
$$(x^{-4})^5(x^3y^2)^5$$

**21.** 
$$(m^5)^{-3}(m^4n^5)^4$$

**24.** 
$$(4^{-1}s^3)^{-2}$$

**27.** 
$$(y^6)^3$$

**30.** 
$$d^3 \cdot (d^2)^5$$

Simplify. Write each answer in scientific notation.

**31.** 
$$10^{-9} \cdot (2 \times 10^2)^2$$

**32.** 
$$(3 \times 10^{-6})^3$$

**35.** 
$$10^{-3} \cdot (2 \times 10^3)^5$$

**38.** 
$$(2 \times 10^{-3})^3$$

**41.** 
$$(4 \times 10^8)^{-3}$$

**44.** 
$$(10^2)^3(6 \times 10^{-3})^3$$

**33.** 
$$10^4 \cdot (4 \times 10^6)^3$$

**36.** 
$$(7 \times 10^5)^3$$

**39.** 
$$(5 \times 10^2)^{-3}$$

**42.** 
$$(1 \times 10^{-5})^{-5}$$

**45.** 
$$10^7 \cdot (2 \times 10^2)^4$$

- **46.** The kinetic energy, in joules, of a moving object is found by using the formula  $E = \frac{1}{2}mv^2$ , where m is the mass and v is the speed of the object. The mass of a car is  $1.59 \times 10^3$  kg. The car is traveling at  $2.7 \times 10^1$  m/s. What is the kinetic energy of the car?
- **47.** The moon is shaped somewhat like a sphere. The surface area of the moon is found by using the formula  $S = 12.56r^2$ . What is the surface area of the moon if the radius is  $1.08 \times 10^3$  mi?
- **48.** Because of a record corn harvest, excess corn is stored on the ground in a pile. The pile is shaped like a cone. The height of the pile is 25 ft, and the radius of the pile is  $1.2 \times 10^2$  ft. Use the formula  $V = \frac{1}{3}\pi r^2 h$  to find the volume.
- **49.** Suppose the distance in feet that an object travels in t seconds is given by the formula  $d = 64t^2$ . How far would the object travel after  $1.5 \times 10^3$  seconds?